Structural and genetic characterization of Shigella boydii type 17 O antigen and confirmation of two new genes involved in the synthesis of glucolactilic acid.
نویسندگان
چکیده
Shigella strains are human pathogens and normally identified based on their O antigens. The chemical structure and gene cluster of Shigella boydii type 17 O antigen were studied. As judged by sugar and methylation analyses along with NMR spectroscopy data, the O antigen of S. boydii type 17 has a linear trisaccharide O unit, which consists of two residues of N-acetylgalactosamine (GalNAc) and a 4-O-[(R)-1-carboxyethyl]-d-glucose (glucolactilic acid). The O antigen gene cluster of S. boydii type 17 was sequenced and genes encoding UDP-N-acetylglucosamine C4 epimerase for GalNAc synthesis, O unit flippase, O antigen polymerase, and glycosyltransferases were putatively identified based on sequence similarities and the presence of conserved motifs. Two genes, whose functions could not be clearly indicated by homology search, were confirmed to be involved in the synthesis of glucolactilic acid by mutation and structural verification of the O antigens from the mutants. To our knowledge, this is the first time that genes involved in the synthesis of glucolactilic acid have been reported. Two genes specific to S. boydii type 17 were also identified.
منابع مشابه
Structural and genetic characterization of the Shigella boydii type 18 O antigen.
Shigella strains are important human pathogens and are normally identified by their O antigens. O antigen is an essential part of the lipopolysaccharide present in the outer membrane of Gram-negative bacteria and plays a role in pathogenicity. Structural and genetic organization of the Shigella boydii type 18 O antigen was investigated. As judged by sugar and methylation analyses and NMR spectr...
متن کاملStructural and genetic characterization of the Shigella boydii type 13 O antigen.
Shigella is an important human pathogen. It is generally agreed that Shigella and Escherichia coli constitute a single species; the only exception is Shigella boydii type 13, which is more distantly related to E. coli and other Shigella forms and seems to represent another species. This gives S. boydii type 13 an important status in evolution. O antigen is the polysaccharide part of the lipopol...
متن کاملStructural and molecular characterization of Shigella boydii type 16 O antigen.
Shigella is a well-known human pathogen causing dysentery and their typing is solely based on the O antigens. We investigated the chemical structure and gene cluster of Shigella boydii type 16 O antigen. As judged by sugar and methylation analyses along with NMR spectroscopy data, the O antigen has an O-acetylated branched pentasaccharide repeating O unit, which consists of two D-mannose residu...
متن کاملMolecular analysis of Shigella boydii O1 O-antigen gene cluster and its PCR typing.
Shigella is an important human pathogen and is closely related to Escherichia coli. O-antigen is the most variable part of the lipopolysaccharide on the cell surface of Gram-negative bacteria and plays an important role in pathogenicity. The O-antigen gene cluster of S. boydii O1 was sequenced. The putative genes encoding enzymes for rhamnose synthesis, transferases, O-unit flippase, and O-unit...
متن کاملThe O-antigen gene cluster of Shigella boydii O11 and functional identification of its wzy gene.
Shigella strains are human pathogens and their identification is usually based on their O-antigens. The O-antigen gene cluster of Shigella boydii O11 was sequenced. All the expected genes for the synthesis of the O-antigen were identified on the basis of homology and genes for the biosynthesis of dTDP-l-Rhamnose, genes encoding sugar transferases, as well as genes encoding O unit flippase (wzx)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemical and biophysical research communications
دوره 349 1 شماره
صفحات -
تاریخ انتشار 2006